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Matrix Maths in Mobiles 
Maths in Mobile Phones Part 2 

  

The role of Hadamard-Rademacher-Walsh transforms in 
present and future radio systems. 

In last month's Hot Topic we studied the Fourier transform, it's role in waveform 
geometry and the role of waveform geometry in OFDM (orthogonal frequency 
division multiplexing). 

In this month's Hot Topic, we look at the role of matrix maths in mobiles and 
specifically Hadamard-Rademacher-Walsh Transforms, the contribution these 
transforms make to reducing costs and improving performance in present radio 
systems and their role in future radio systems.  

The useful property of the Fourier Transform was defined as it's ability to represent 
any complex signal viewed in the frequency domain as a composite of simple 
sinusoidal signals. 

In source coding, we use Fourier Transforms, or rather Fast Fourier Transforms, to 
analyse and synthesise the composite analogue waveforms encountered in real life. 
We do this in order to make the content (voice, audio, image, video) easier to 
compress. 

In OFDM we user Fourier transforms to translate a symbol stream on to discrete 
frequency sub carriers. The effect is to provide additional frequency diversity and 
time diversity in that the symbols are further apart in time than the original bit 
stream. We do this so that we can support higher data rates in OFDM radio systems. 

However present cellular systems make wide use of the Hadamard Transform both 
in the channel encoding/decoding process(convolutional and block coding)and code 
division multiple access (CDMA). Channel coding provides time diversity. CDMA 
provides frequency diversity (by spreading the original data signal across a wider 
bandwidth).  

Future radio systems combine the properties of channel coding, CDMA and OFDM to 
deliver performance advantage.  

Channel coding and CDMA together exploit the properties of matrix maths.  

We exploit the properties of the Fourier Transform to provide performance gain in 
source coding and to implement OFDM. 

We exploit the properties of matrix maths in channel coding and CDMA to achieve a 



system performance gain. 

The origins of matrix maths  

Matrix maths is the science of putting numbers in boxes or rather, arranging numbers 
in rows and columns (a horizontal and vertical matrix).The numbers can be binary or 
non binary. 

The earliest documentary evidence of applied maths using matrices are clay tablets 
used by the Babylonians in the third or fourth century BC, the forerunner of the 
counting tables used by the Romans. Counting tables were simply tables with a 
ridged edge. The tables contained sand and the sand would be divided up into 
squares to help in counting and calculation. 

Early matrix concepts were developed by the Chinese in the Han Dynasty 
between 200 and 100 BC to solve linear equations. This implied an understanding 
that matrices exhibit certain properties, later described as 'determinants' which 
are revealed when the numbers in the matrix are added or multiplied either 
vertically by row, horizontally or diagonally. 

This understanding was documented in 'Nine Chapters on the Mathematic Art' put 
together around 100 AD and was the product of a period now often described as 'The 
First Golden Age of Chinese Mathematics' (the second golden age was in the 13th 
and 14th century). 

Historically it is important to realise that the development of matrix theory in China 
was contemporaneous with the work of Archimedes on curves and circles and Pi 
between 287 and 212 BC.  

Thus the origins of the Fourier Transform and the Hadamard Transform can 
both be traced back to the pre Christian era. 

As with the science of geometry, it took over 1000 years before anything else 
meaningful happened in matrix theory. 

In 1683, the Japanese mathemetician Takakazu Seki wrote the 'Method of solving 
dissimulated problems' which precisely described how the earlier Chinese matrix 
methods had been constructed.  

At the same time, in Europe, Gottfried Leibniz was producing work on determinants 
(which he called 'resultants'). This became the basis for a body of work to which 
mathematicians like Cramer, Maclaurin, Bezout and Laplace all contributed 
throughout the 18th century.  

The term 'determinant' was used by Gauss in 1801 in his 'Disquisitiones arithmeticae' 
side by side with his work on the coefficients of quadratic forms in rectangular 
arrays and matrix multiplication. This became the basis for a body of work to which 
other mathematicians such as Cauchy (who proved that every real symmetric 
matrix is diagonisable), Sturm, Cayley and Eisenstein contributed in the first half 
of the 19th century. 



However it was JJ Sylvester who is first credited with using the term 'matrix' in 1850. 
Sylvester defined a matrix to be 'an oblong arrangement of terms which could be 
used to discover various 'determinants' from the square arrays contained within it'  

This work was developed in his grandly titled 1867 paper 'Thoughts on Inverse 
Orthogonal Matrices,Simultaneous Sign-successions and Tesselated 
Pavements in two or more colours, with applications to Newton's Rule, Ornamental 
Tile Work, and the Theory of Numbers'. 

This paper established a new level of understanding about pattern behaviour in 
matrices (using ornamental tiles as an example). In between times, Sylvester gave 
maths tuition to Florence Nightingale. 

At which point we can introduce Jacques Hadamard.  

Jacques Hadamard and his family survived the Prussian siege of Paris in 1870 by 
eating elephant meat.  

Hadamard obtained his doctorate in 1892 with a thesis on analytic theory and related 
work on determinant equality, the property that allows matrices to be used as a 
reversible transform. Hadamard also produced pioneering work on boundary value 
problems and functional analysis and is generally seen as 'the founding father' of 
modern coding theory. 

Hadamard's work was developed by Hans Rademacher, particularly in the area of 
orthogonal functions now known as Rademacher functions that appeared in a 
paper published in 1922 and was the forerunner of pioneering work in analytic 
number theory. 

Hans Rademacher's work was contemporaneous with the work of Joseph Leonard 
Walsh (known as 'Joe' to his friends). This included a publication in 1923 on 
orthogonal expansions, later called 'Walsh Functions'. Joe Walsh became a full 
professor at Harvard in 1935 and produced pioneering work on the relationship of 
maths and discrete harmonic analyis. 

(Matrix) Mathematicians of the Month 
Jacques Hadamard 1865-
1963 

Hans Rademacher 1892-
1969 

Joseph Leonard Walsh 1895-
1972 

   

The Hadamard Matrix and the Hadamard Transform 



In last month's Hot Topic we said that a transform changes something into 
something else. The process is most useful when it is reversible/bi-directional 
and the purpose is generally to make a particular process easier to achieve.  

In our context of interest, we want to take a string of numbers and rearrange or 
redistribute the number string in rows and columns so that they are more easily 
processed. In other words, a Hadamard Transform is a transform that exploits the 
properties of a Hadamard matrix in the same way that a Fourier transform exploits 
the properties of the Fourier number series (the ability to describe waveforms as 
summations of sines and cosines). 

The properties of a Hadamard Matrix 

Hadamard matrices possess a number of useful properties.  

Hadamard matrices are symmetric which means that specific rows can be 
matched to specific columns.  

Hadamard matrices are orthogonal which means that the binary product between 
any two rows equals zero.(the binary product is simply the result of multiplying all 
the components of two vectors, in this case rows, together and adding the results). 
We will see why this is useful later. 

This means that if you compare any two rows, they match in exactly N/2 places 
and differ in exactly N/2 places so the 'distance' between them is exactly N/2. 
We explain why 'distance' is useful later. 

Exactly half of the places that match are +1's and the other half are -1's. Exactly half 
of the places that differ are (-1+1) pairs and exactly half are (+1-1) pairs (the 
symmetric properties of the matrix). 

You can turn a Hadamard matrix upside down (reverse the +1's and -1's) and it will 
still work. 

The matrix has the property of sequency. The sequence number of each row is the 
product of the number of transitions from +1 to -1 in that row. A row's sequence 
number is called it's sequency because it measures the number of zero crossings in a 
given interval. Each row has it's own unique sequency value which is separate from 
its natural order (the row number). 

The Hadamard Transform can therefore be correctly described as a Sequency 
Transform which is directly analogous to describing the Fourier Transform as a 
Frequency Transform. 

In other words, given that the rows in a Hadamard matrix are orthogonal, the 
Hadamard Transform can be used to decompose any signal into it's constituent 
Hadamard components. In this sense it works just like a Fourier Transform but with 
the components based on sequency rather than frequency. 

As with the Fourier Transform, a number of these components can be discarded 



without destroying the original data so the Hadamard transform can be used for 
compression . We address this in detail in next month's Hot Topic 

The Hadamard transform can also be used for error correction. A much quoted 
example is the use of Hadamard Transforms to code the pictures coming back from 
the visits to the moon in the 1960's and the Mariner and Voyager missions to Mars. 
The pictures were produced by taking three black and white pictures in turn through 
red, green and blue filters. Each picture was considered as a thousand by thousand 
matrix of black and white pixels and graded on a scale of 1-16 according to it's 
greyness (white is 1, black is 16). These grades were then used to choose a 
codeword in a eight error correction code based on a Hadamard matrix of order 32. 
The codeword was transmitted to earth and then error corrected.  

It was this practical experience with applied Hadamard Transforms that led on to the 
use of Hadamard Transforms in all present generation cellular systems (including 
GSM and CDMA).  

These use convolutional and block coding to increase the distance between a 0 and a 
1 or rather a -1 and a +1. The process is described in more detail below. Note that 
channel coding is a distinct and separate though related process to code division 
multiple access. Both processes exploit the properties of the Hadamard matrix.  

Channel coding produces 'coding gain' and code division multiple access produces 
'spreading gain'. Coding gain can be in the order of 10 dB or so and spreading gain in 
the order of 20 dB for lower user data rates. Together they show the extent to which 
the Hadamard transform contributes to the link budget of present cellular radio 
systems. 

Differences between the FFT and the FHT 

The FFT is best at modelling curves and sinusoidal waveforms. The hardest 
curve to model with a Fourier Transform is a step function, also known as a square 
wave, where the edges of the waveform exhibit a theoretically infinite number of 
sinusoids. In practice these can be approximated but it is the 'Achilles heel' of the 
Fourier transform (often described as 'the Gibbs Effect'). 

The FHT is best at capturing square waves. The hardest curve to model with a 
Hadamard Transform is a basic Sine/Cosine curve. This is intuitively consistent with 
matrix theory - describing square waveforms by putting numbers into squares. 

Hadamard Transforms when implemented as Fast Walsh Hadamard Transforms 
use only additions and subtractions and are therefore computationally efficient.  

Fourier Transforms require many multiplications and are slow and expensive to 
execute. Fast Fourier Transforms employ imperfect 'twiddle factors' so trade accuracy 
against complexity and 'convergence delay'. 

The magnitude of an FFT is invariant to phase shifts in the signal. This is not true in 
the case of the FHT because a circular shift in one row of the Hadamard matrix does 
not leave it orthogonal in other rows. This is the Achilles heal of the FHT and is a 



weakness that underpins the ultimate limitations of CDMA in terms of error 
performance and susceptibility to AM/PM distortion. 

However with this proviso, the Hadamard Transform has been and remains a 
fundamental part of the signal processing chain in a mobile phone both in terms of it's 
application in discrete processes such as channel coding and code division 
multiplexing but also in a support role to other processes. 

The fact that it is simpler to execute and has different but complementary properties 
makes it a useful companion to the FFT and the two processes working together 
provide the basis for future performance gain. 

Next month's Hot Topic looks specifically at the role of the FHT, the FFT, wavelet 
transforms and AM/FM transforms (a sense of the wheel going full circle ) in source 
coding applications and the integration of these techniques with other parts of the 
signal processing chain. 

But for the moment let's concentrate specifically on the Hadamard Transform. 

Having mastered the theory, let's examine how the Hadamard Transform is applied in 
present radio systems. 

Some naming issues 

For brevity and in due deference to Hans Rademacher and Joe Walsh, we shall 
describe these codes as Hadamard codes used as a Hadamard Transform.  

As with the Fourier Transform, the Hadamard Transform computation can be 
decimated to speed up the computation process in which case it is known as a Fast 
Hadamard Transform (FHT).  

In some ways, the FHT is easier to implement computationally as it does not 
require the 'twiddle factors' implicit in the FFT. This is because the discrete FFT is 
approximating and then describing a composite sinusoidal waveform (hence the 
twiddle factors). THe FHT is describing square waves and therefore does not need 
additional approximation correction factors The Fast Hadamard Transform (FHT) is 
used on the receive path. The Inverse Fast Hadamard Transform (IFHT) is used 
on the transmit path. 

As we have said, the FHT has properties that are distinct and different from the FFT 
(the Fast Fourier Transform) but are also complementary. 

The combination of the two techniques (the FHT and FFT together) deliver a number 
of specific performance advantages which should be realisable in next generation 
radio systems including wide area (HSOPA and 1XEVDO/FLO)and local and 
personal area networks. 

These benefits should include cost reduction, improved coverage, improved capacity, 
and more consistent and flexible radio access connectivity. 



Cost reduction 

In the 1970's there was a consensus that it was going to be easier(cheaper) to filter in 
the time domain rather than the frequency domain and by implication, to process and 
filter in the digital domain rather than the analogue domain 

This started the process whereby channel spacing in cellular systems has relaxed 
from the 25 or 30 KHz used in first generation systems to the 200 KHz used in GSM 
to the 1.25 MHz or 5 MHz systems used in present 3G networks. The process is 
taken further, for example in WiFi systems (20 MHz) and ultra wide band radio 
systems (>500 MHz). 

The objective is to reduce the cost of RF(radio frequency) filtering both in the handset 
and the base station  

The need to deliver cost reduction AND better performance  

However user expectations of performance increase over time. User data rates in first 
generation analogue systems were typically 1200 or 2400 bits per second, GSM data 
rates are tens of kilobits, 3G data rates are (supposed to be) hundreds of kilobits and 
have to compete in the longer term with local area WiFi systems delivering tens of 
megabits and personal area systems delivering hundreds of megabits (wireless UWB 
USB at 460 mbits/s as an example). 

The performance of a radio system can be measured in terms of the radio system's 
sensitivity, selectivity and stability. 

Sensitivity is the ability of the radio system to extract a wanted signal from the noise 
floor. Improved sensitivity translates into improved range and/or an ability to support 
higher data rates. In terms of the user experience, sensitivity equals coverage and 
capacity. 

Selectivity is the ability of the radio system to extract a wanted signal in the presence 
of unwanted signals from other users. As with sensitivity, improved selectivity 
translates into improved range and capacity. However, by relaxing the RF channel 
spacing over time, we have thrown away some of the selectivity inherent in narrow 
band radio systems so have the need to replicate this in some other way. In parallel, 
users expect to receive voice and non voice services in parallel so we have the need 
to support multiple data streams per user which implies a need to provide 
additional per user channel to channel selectivity. 

Stability is the ability of the radio system to perform consistently over temperature 
over time which in turn is dependent on the short and long term accuracy of the 
frequency and time reference used in the transceiver. The move to higher 
frequencies in the microwave band has increased the need for a more accurate 
frequency reference but this has been off set by the relaxation in RF channel 
spacing. The combination of higher data rates and the need to deliver improved 
sensitivity and selectivity in the baseband processing sections of the transceiver has 
increased the need for a more accurate (and potentially expensive) time reference. 
As we shall see later, this in a sense is the Achilles heal of present CDMA systems 



(their inability to scale to much higher data rates without an inconveniently accurate 
time reference). In last month's Hot Topic we showed how OFDM shifts some of the 
hard work involved here back into the frequency domain. In terms of the user 
experience, stability therefore translates directly into user data rates AND the 
consistency of the user experience. 

The role of binary arithmetic in achieving sensitivity, selectivity and stability 

In 1937, Claude Shannon's MIT thesis 'A symbolic analysis of relay and switching 
circuits' helped to establish the modern science of using binary arithmetic in 
wireless(and wireline) communications. The science was consolidated by Richard 
Hamming in his work on error detection and correction codes (1950), digital filtering 
(1977), coding and information theory (1980), numerical analysis (1989) and 
probability (1991). Hamming formalised the concept of distance between binary 
numbers and binary number strings which is in practice the foundation of modern 
radio system design. 

In digital radio systems, we take real world analogue signals (voice, audio, video, 
image) and turn the analogue signals into a digital bit stream which is then 
mathematically manipulated to achieve the three 'wanted properties' - sensitivity, 
selectivity, stability. 

Note that analogue comes from the Greek word meaning proportionate. Analogue 
implies that the output of a system should be directly proportionate (i.e. linear) to the 
input of the system and is continuously varying. To represent these waveforms 
digitally requires a sampling process which has to be sufficiently robust to ensure that 
analogue waveforms can be reconstructed accurately in the receiver. (Harry Nyquist 
'Certain Factors affecting telegraph speed 1924).  

Anyway, taking this small but significant proviso into account binary numbers can be 
used to deliver sensitivity. 

Coding distance - sensitivity 

0 - 1 

For example, moving a 1 further away from a 0 implies an increase in distance which 
implies an increase in sensitivity. 

 Coding distance - selectivity 
01101011010010100 

10011011101100010 

The greater the distance between two strings of numbers (code streams in CDMA), 
the better the selectivity between users. The above two codes differ in 10 places 
which describes their 'hamming distance' from each other. 



 Coding distance - stability (code correlation) 
01101011010010100 

01101011010010100 

If two code streams are identical (no distance between them) they can be used to 
lock on to each other, for example to provide a time reference from a base station to 
a handset or a handset to a base station. Longer strings of 0s and 1s will produce 
distinct spectral components in the frequency domain which can be used to provide a 
frequency reference. 

Counting in binary 
1 1 0 1 0 0 1 
64 32 16 8 4 2 1 

We can also use binary numbers as a counting system. Interestingly, as we shall see 
later, if we start arranging 0's and 1's in a symmetric matrix of rows and columns, 
the binary product (sometimes known as the dot product) of the numbers in a column 
or row can be used to uniquely identify the position of that column or row. This is a 
property(described earlier) known as sequency and is the basis of many of the error 
correction schemes used in present radio systems. 

Coding distance and bandwidth gain  

A first step to increasing the distance between a 0 and a 1 is to change a 0 into a -1 
and a 1 into a +1. If we take either a -1 or a +1 and multiply by a series of -1's and 
+1s running at a faster rate then the bandwidth of the composite signal is expanded. 
The converse process applied in the receiver will take the composite 'wide band' 
signal and collapse the signal back to its original (data) bandwidth. This is the 
principle of spreading gain used in CDMA systems and is in many ways analogous to 
the bandwidth gain achieved in a wideband FM radio system. 

An example - The Barker code used in 802.11 b WiFi systems 

Basic 802.11 b WiFi systems provide an example. The original 802.11 b standard 
supports data rates of 1 M/bit/s and 2 M/bits/s using either BPSK modulation (1 
M/bit/s) or QPSK (2 M/bit/s). The data bits are multiplied with an 11 bit Barker 
sequence at a 1 MHz data rate which expands the data bandwidth of 2 MHz to an 
occupied channel bandwidth of 22 MHz giving just over 10 dB of coding gain. 

Barker sequences are named after RH Barker from his 1953 paper on ' Group 
Synchronisation of Binary Digital Systems read at the IEE in London. They were/ are 
widely used in radar systems to help in distance estimation and were first used in low 
cost commercial two way radio systems in the first generation of digital cordless 
phones developed for the 902-908 MHz US ISM band. 

The 11 bit Barker code used in 802.11 b is as follows 



11 bit Barker sequence 
+1 -1 +1 +1 -1 +1 +1 +1-1-1-1-1 

If we take this spreading sequence and multiply it with an input data bit -1 and apply 
the rule that if the signs are different, the result is a -1, if the signs are the same 
the result is a + 1 then we get the following 

Input data bit -1                     
Spreading code +1 -1 +1 +1 -1 +1 +1 +1 -1 -1 -1 
Composite code -1 +1 -1 -1 +1 -1 -1 -1 +1 +1 +1 
Despreading code +1 -1 +1 +1 -1 +1 +1 +1 -1 -1 -1 
Output data bit -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

As you can see, the despreading code is the same as the spreading code. 

Effectively we have answered the question 'is at a -1 or + 1?' eleven times over and it 
is this which gives us the spreading gain. 

Complementary Code Keying used in 802.11 b 

However, if the WiFi data rate is increased to 11 M/bits per second, the spreading 
gain disappears. 

In this case, the Barker code is replaced with 64 different 8 bit codes. The data bits 
are grouped into 6 bit symbols and each 6 bit symbol is mapped to one of the 64 
codes. When the receiver demodulates the symbol stream/bit stream, the 8 bits 
received should be one of the 64 eight 8 bit code sequences which correspond to one 
of the 6 bit input data symbols. This is described as complementary code keying 
and is a good example of the use of sequency in the encode decode process. 

There is technically no spreading gain with this arrangement though there is some 
(modest) coding gain due to the equality of distance between each of the 64 codes. 
The occupied bandwidth remains at 22 MHz. 

The difficulty then arises as to how to manage higher user data rates. The answer 
with 802.11 b is to use an OFDM multiplex as described in previous Hot Topics. 

Walsh Codes used in IS95 CDMA/1EX EV  

Present generation wide area cellular CDMA systems have to date not needed to 
support the higher data rates expected in local area systems and for that reason have 
not to date needed to use an OFDM multiplex. 

The code multiplexing and channel coding were chosen to provide a good 
compromise between implementation complexity and performance. 

IS95 CDMA, the pre cursor of the CDMA2000 and 1XEV/DO system in use today, 
uses a 64 by 64 Hadamard matrix. This consists of 64 codes of length 64 of which 



code 0 is made up of all 1's and is used as a pilot and code 32 is made up of 
alternating 1's and 0's and is used for synchronisation. The other codes have their 0's 
and 1's, or rather -1's and +1's, arranged so that each of the codes is orthogonal to 
each other. Orthogonal in this context means that the codes are equally distinct from 
one another or in other words do not interfere with each other as a product of the 
(FHT) transformation process. These codes are often referred to as Walsh codes 
(named after Joseph Walsh) but are in practice based on the Hadamard matrix. Each 
code has 32 places where it is different from other codes. In other words each code 
has a Hamming distance of 32 from other codes in the matrix. 

In the uplink, every six information bits are mapped to one of the 64 bit rows of the 
Hadamard matrix. The 64 bits in the row are substituted for the original 6 bits and the 
64 bits are modulated on to the radio carrier using QPSK modulation. This is an 
Inverse Fast Hadamard transform.  

The base station applies a Fast Hadamard Transform on every 64 received bits. 
Ideally only one of the resultant FHT coefficients will be non zero. The non zero value 
determines the row number which in turn determines the 6 bits originally sent. In 
other words, the process exploits the property of 'sequency' implicit in the Hadamard 
Matrix. 

Elegantly, the IFHT/FHT delivers some useful spreading gain (64/6=10.75 dB). It is 
also error tolerant. Given that the Hamming distance between each Hadamard code 
is 32, up to 15 bits can be errored per block of 64 without corrupting the 64 bits 
actually sent. 

The only slight snag is that all users are co sharing the 64 codes and have to be 
separated from each other by unique scrambling codes (-1's and + 1's running at the 
same rate as the data) . The spreading codes deliver sensitivity, the scrambling 
codes deliver selectivity, the pilot and synchronisation codes deliver stability. 

In the downlink, each row in the Hadamard matrix can be used to carry a unique 
channel to a unique user. Theoretically this means 62 channels per 1.25 MHz of 
channel bandwidth (taking out the pilot and synchronisation channel). Every single 
information bit is replaced with the entire 64 bits of the users code (a 64/1 expansion). 
A data rate of 19.2 kbps therefore is spread to an outbound data rate of 1.2888Mbps 
occupying a 1.25 MHz channel. As with the uplink, a scrambling code that is unique 
to the base station is also applied to provide base station to base station selectivity 
(actually a single code 'pseudo noise' sequence off set in time for each base station). 

Later evolutions of IS95 have increased the matrix to 128 rather than 64 but the same 
principles apply. Either way, the CDMA multiplexing and channel coding have proved 
to be an effective format for exploiting the properties of the Hadamard matrix to 
deliver beneficial performance gains over simpler radio systems. 

OVSF Codes in W-CDMA 

The orthogonal variable spreading factor codes used in W CDMA were originally 
conceived as a re-ordering of the Walsh codes used in IS95 CDMA with the added 
twist that user data rates could be changed every 10 milliseconds with users being 



moved between different lengths of spreading code (hence the 'variable'description 
used). 

SF4 SF8 SF16 
    +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 
  +1+1+1+1+1+1+1+1   
    +1+1+1+1+1+1+1+1-1-1-1-1-1-1-1-1 
+1+1+1+1     
    +1+1+1+1-1-1-1-1+1+1+1+1-1-1-1-1 
  +1+1+1+1-1-1-1-1   
    +1+1+1+1-1-1-1-1-1-1-1-1+1+1+1+1 
      
    +1+1-1-1+1+1-1-1+1+1-1-1+1+1-1-1 
  +1+1-1-1+1+1-1-1  
  +1+1-1-1+1+1-1-1-1-1+1+1-1-1+1+1 
+1+1-1-1     
    +1+1-1-1-1-1+1+1+1+1-1-1-1-1+1+1 
  +1+1-1-1-1-1+1+1  
    +1+1-1-1-1-1+1+1-1-1+1+1+1+1-1-1 
      
    +1-1+1-1+1-1+1-1+1-1+1-1+1-1+1-1. 
      
  +1-1+1-1+1-1+1-1 +1-1+1-1+1-1+1-1-1+1-1+1-1+1-1+1 
      
+1-1+1-1   +1-1+1-1-1+1-1+1+1-1+1-1-1+1-1+1 
      
  +1-1+1-1-1+1-1+1 +1-1+1-1-1+1-1+1-1+1-1+1+1-1+1-1 
      
    +1-1-1+1+1-1-1+1+1-1-1+1+1-1-1+1 
      
+1-1-1+1 +1-1-1+1+1-1-1+1 +1-1-1+1+1-1-1+1-1+1+1-1-1+1+1-1 
      
    +1-1-1+1-1+1+1-1+1-1-1+1-1+1+1-1 
      
  +1-1-1+1-1+1+1-1 +1-1-1+1-1+1+1-1-1+1+1-1+1-1-1+1 

The section in bold indicates that this is a tree structured code. The codes to the right 
are longer copies of the codes to the left. The bold segment denotes a branch of the 
tree stretching from left to right. At SF4 (which means spreading factor 4) four users 
can be supported on each of 4 codes at, say a theoretical data rate of 960 Kbits. The 
code tree then extends rightwards to SF256 (not shown for reasons of space and 



k/bits/s.  

As the data rate changes, potentially every frame (every 10 milliseconds), users can 
be moved to the left or right of the code tree. However if a user is at SF4, no users 
can be on codes to the right on the same branch. Similarly if you have two users at 
SF8 or 4 users at SF16 on the same branch no users to the right on the same branch 
can be supported and so on rightwards across the branch. 

A user at SF4 will have minimal spreading gain. A user at SF256 will have maximum 
spreading gain with a difference of just over 20 dB between the two extremes. As you 
would expect this means that as a user's data rate increases, the spreading gain 
decreases. The occupied bandwidth (5 MHz in this case) remains the same.  

The spreading codes are used with scrambling codes (long codes) with the 
scambling codes providing user to user/ channel to channel selectivity on the uplink 
and base station to base station selectivity on the downlink. Additional short codes 
are used for uplink and downlink synchronisation. 

This is the Release 99 WCDMA radio layer code scheme. It provides a significant 
amount of flexibility both in terms of being able to support a wide range of variable 
(and potentially fast changing) data rates per user and a significant amount of 
flexibility in being able to support multiple data streams per user. 

It does however require careful implementation both in terms of code planning and 
power planning. Although the variable spreading factor codes are orthogonal (hence 
their name orthogonal spreading factor codes), this orthogonality can be lost if code 
power is not carefully balanced or the non linearities inherent both in the radio system 
and the channel are not managed aggressively. 

If orthogonality is compromised, unwanted error energy is projected across code 
channels which will then suffer from an unacceptably high error vector magnitude 
which in turn compromises sensitivity and selectivity which in turn compromises 
coverage (range) and capacity. 

The mechanism for power management is an outer and inner control loop. The inner 
control loop also known as fast power control runs at 1500 Hz and if correctly 
implemented can be effective but in its own right absorbs a significant percentage of 
the available signal energy (about 20%). 

HSDPA aims to simplify this process and reduce some of the power control signalling 
and energy overhead by only using the SF16 part of the code tree and dispensing 
with fast power control. However, as you might have noticed, this takes away one of 
the desired properties of the OVSF code tree which is the ability to support lots of 
users each with multiple simultaneous channels each at a variable data rate. In other 
words, much of the multiplexing capability of the OVSF code tree disappears if only 
SF16 is used. 

The answer used in HSDPA is to have a high speed data shared channel (HS-
DSCH) which can be shared by multiple users with a MAC driven access control 
based on 2 millisecond (and later .5 millisecond frames) that is not dissimilar to the 



contention based MAC used in present WiFi systems. 

The challenge here is that the shared channel requires a new high speed shared 
physical control channel (HSDPCCH). This control channel has to carry the 
channel quality indication (CQI) messages and acknowledgement/negative 
acknowledgement (ACK/NACK) messages that the MAC needs to decide on 
admission control and other factors such as coding overhead, choice of modulation 
and transmission time interval. 

This signalling is discontinuous but when present increases the peak to average ratio 
of the transmitted (composite) signal and can also encounter relative timing issues 
with the other (dedicated)control channels. 

If the high speed control channel is not correctly detected, no communication takes 
place which is potentially a bit hazardous. The peak to average ratio can be 
accommodated by backing off the PA but this has an impact on coverage(range).  

In a sense, HSDPA has exchanged the code planning and power planning 
challenges inherent in Release 99 WCDMA with code sharing and power 
sharing issues. This means that the RF performance of the handset and base 
station remains as a critical component of overall system performance. 

Although some of the functional complexity at the PHY (physical) radio level has been 
moved to the MAC (medium access control) level, the effectiveness and efficiency of 
the MAC is dependent on the careful measurement and interpretation of the CQI and 
ACK/NACK responses. 

The 7dB step change in power that occurs when the CQI and/or ACK/NACK 
signalling is transmitted can trigger AM/PM distortion. This may cause phase errors 
which in turn will compromise CQI measurements or disrupt the ACK/NACK 
signalling.  

This will probably be the determining factor limiting coverage and will probably require 
some conservative cell geometry factors (signal versus noise rise across the cell) in 
order to maintain the signalling path (without which nothing else happens). 

The requirement for a more complex and flexible multiplex can be met either by 
having a rather over complex code structure and/or an over complex MAC. Either or 
both can be problematic both from a radio planning and/or a handset/base station 
design perspective. 

CDMA/OFDM hybrids as a solution 

This seems to imply that something else will need to be done to allow these wide 
area radio systems to deliver data rates that meet user's likely future data rate 
expectations. 

The options are either to increase cell density and/or to increase the sensitivity, 
selectivity and stability of the handsets and base stations- preferably both. 



In 1XEV, (including the most recent 1XEV-DO Revision A) handset enhancements 
are based on implementing receive diversity and advanced equalisation. Base station 
enhancements include implementing 4 branch receive diversity (two pairs of cross 
polarised spatially separated antennas) and pilot interference cancellation - a 
mechanism for getting unwanted signal energy out of the receive path. 

Qualcomm's MediaFlo uses these techniques but adds an OFDM multiplex. This is 
specifically applied to optimise a broadcast downlink (hence the name MediaFlo). A 
time division multiplex slot is allocated to all cells in a region as a dedicated broadcast 
downlink. The slot carries one or more dedicated broadcast packets. Handsets 
receive the same broadcast packet from multiple cells and then soft combine to 
improve reception. The OFDM multiplex helps the soft combining process (by slowing 
the symbol rate).  

MediaFlo is however an early example of a more general application of combined 
CDMA/OFDM radio systems sometimes described as 'scaleable bandwidth' 
systems where the occupied bandwidth can be anything from a few tens of KHz to 
hundreds of MHz. Practically in the 1XEV and MediaFlo road map this seems to 
suggest scaleability from the existing 1.25 MHz channels to 20 MHz channels (with 
compatibility to existing WiFi and proposed WiMax system options). 

A similar evolution path exists for HSDPA with advanced receiver techniques being 
specified in Release 6 together with an enhanced uplink (HSUPA). Release 7 is likely 
to include standardised multiple antenna/MIMO proposals and HSOPA - the addition 
of an OFDM multiplex in the downlink to provide data rates approaching 40 Mbps in 
a 20 MHz or 40 MHz channel.There is no present proposal to implement OFDM in 
the uplink either in 1X EV-DO or HSOPA. 

The downlink evolution road map for 1XEV and HSDPA does however mean that we 
will have a combination of CDMA and OFDM in at least two mainstream wide area 
cellular standards, sometimes generically described as 'Super 3G'. 

It is therefore useful to have an understanding of how a combination of CDMA and 
OFDM will work in terms of signal processing task partitioning. 

FHT/ FFT task partitioning in future radio systems  

Transmit path 

Source coding Channel coding 
Channel Multiplexing, 
Orthogonal spreading 
codes and scrambling 
codes 

Frequency multiplexing 
orthogonal frequency 
division multiple access 

  

Voice, audio, 
image,video 

Convolutional 
and block coding CDMA OFDM 

Inverse FFT 

  
Inverse FHT Inverse FHT Inverse FFT 



The above shows the transforms, or rather inverse transforms used in the transmit 
path of a hybrid CDMA/OFDM transceiver. 

The job of the inverse FFT in source coding is to take the composite time domain 
waveform from the quantised voice, audio, image and video samples and to 
transform them to the frequency domain. The transform makes it easier to separate 
out the entropy (information) and redundancy in the source signal. The bandwidth of 
the signal is compressed. We cover this process in more detail in next month's Hot 
Topic. 

The bit streams representing the voice, audio, image or video samples are then 
channel coded using convolutional and block encoding. This expands the 
occupied bandwidth but increases the distance between the information bits (-1's 
and +1's). This is an Inverse Hadamard Transform.  

The bit stream is then 'covered' with a spreading code and scrambling code. This 
is another Inverse Hadamard Transform. This further expands the occupied 
bandwidth.  

The bit stream is then transformed again using an IFFT to distribute the data stream 
across discrete frequency sub carriers. Note that the IFFT is imposing a set of time 
domain waveforms on a series of frequency sub carriers (lots of sine/cosine 
calculations).The number of points used in the I FFT/FFT and the characterisation of 
the IFFT/FFT determines the number of sub carriers and their spacing and is the 
basis of the 'scaleable bandwidth' proposition implicit both in MediaFlo and present 
HSOPA proposals. 

In the receiver, the OFDM demultiplex (an FFT), recovers the wanted symbol energy 
from the discrete frequency sub carriers. The benefit here, as explained last month, is 
that the symbol rate per sub carrier will be divided down by the number of sub 
carriers. The more sub carriers, the slower the symbol rate. This should make the 
next stage of the process easier which is; 

If this is a combined OFDM/CDMA system, the combining of the symbol stream 
(assuming this is a diversity or MIMO system) and the despreading and descrambling 
of the signal using an FHT. The result should be some useful diversity gain 
(courtesy of the multiple receive paths), some spreading gain (courtesy of the 
spreading/despreading codes) and additional selectivity (courtesy of the 
scrambling codes). This should make the next stage of the process easier which is: 

Channel decoding, usually or often implemented as a turbo coder (two convolutional 
encode/decode paths running in parallel). The FHT produces some additional 
'distance' which translates into coding gain. 

And finally, the bit stream now finally recovered from the symbol stream is delivered 
to the source decoder where an FFT is applied (frequency domain to time domain 
transform) to recover or rather reconstruct or synthesise the original analogue 
waveform. 



Summary 

In this month's Hot Topic, we have studied the properties of the Hadamard Transform 
and it's practical application in present CDMA cellular systems and early generation 
WiFi systems. 

We have showed how the IFHT/ FHT is used in the code division 
multiplex/demultiplex and in channel encoding/decoding to deliver 'distance' which 
can be translated into coverage and capacity gain. 

We have reviewed how the IFFT/FFT is used to add in an OFDM multiplex to slow 
down the channel symbol rate as a (potentially) power efficient mechanism for 
accommodating higher user data rates.  

Note that all these processes are absorbing processor clock cycles with the express 
purpose of achieving a nett gain in system performance which can be translated into 
supporting higher data rates at lower power (the end user benefit).  

The challenge is to deliver these benefits consistently given that user expectations 
increase over time and that physics tends to dictate the limits of any process that we 
are using to realise performance gain. 

In the context of HSDPA and HSOPA, it will for example be a real challenge to 
implement the PHY and MAC sufficiently robustly to provide a realistic chance of 
achieving the theoretical gains. The same implementation issues will apply to future 
iterations of 1XEV/DO. 

In next month's Hot Topic we study the role of the FFT in voice, audio, image and 
video source coding and the integration of the FHT, FHT and other transforms 
(including AM/FM and wavelet transforms) to deliver step function improvements in 
image and voice processing efficiency. 

In practice, it always tends to be a combination of techniques that together deliver 
performance improvements which are translatable into a better more consistent user 
experience.  
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